
DATE OF EXAM 2014-15 Solution
Probability Theory (Stochastic Processes) - Final Exam - M-math 2nd year

Let (Ω,F , P ) be a probability space. All random variables or stochastic processes below will be on this
probability space.

1. (a) Let {Bt} be a standard Brownian motion. Prove that, with probability 1,

lim
n→∞

1

n
B2n = 0.

(b) Let {Xt}t∈[0,∞) be a stochastic process. Show that the following are equivalent.
(i) {Xt} is a Brownian motion.
(ii) {Xt} is a centred Gaussian process with Cov[Xs, Xt] = s ∧ t, ∀s, t ≥ 0.
(c) Let {Bt} be a Brownian motion. Using part (b) or otherwise, show that { 12B4t} is also a Brownian
motion.

Solution:
(a)

1

n
B2n =

(B2n −B2n−2) + (B2n−2 −B2n−4) + · · ·+ (B2 −B0)

n
.

Now, (B2i − B2i−2) ∼ N(0, 2) for each i = 1, · · · , n. And for each i, (B2i − B2i−2) are i.i.d. random
variables. Therefore by the law of large numbers 1

nB2n → 0, as n→∞.

(b) The covariance function determines the finite-dimensional distributions of a centered Gaussian process
since a multidimensional normal distribution is determined by the vector of expectations and by the
covariance matrix. Therefore X is characterized by (ii). Hence, it is enough to show that, for Brownian
motion X, we have Cov[Xs, Xt] = min(s, t). This is indeed true since for t > s, the random variables Xs

and Xt −Xs are independent; hence

Cov[Xs, Xt] = Cov[Xs, Xt −Xs] + Cov[Xs, Xs] = V ar[Xs] = s.

(c) Say Xt := 1
2B4t. From (b), for t > s

Cov[Xs, Xt] = V ar[Xs] = V ar[
1

2
B4s] =

1

4
· 4s = s.

And, also E[ 12B4t] = 0, Since E[Bt] = 0. Therefore { 12B4t} is also a Brownian motion.

�

2. Let (Bt) be a standard one dimensional Brownian motion.
(a) Let X be an N(0, 1)-distributed r.v., which is independent of {Bt}. For any t ∈ [0, 1] show that

P(
√

1− t|X| ≤ |Bt|) =
2

π
arcsin(

√
t).

1



(b) Let τb := inf{s > 0 : Bs = b}. Show that for b > 0,

E(eλτb) = e−b
√
2λ.

(c) Show that for any a > 0, t > 0

P{sup{Bs, 0 ≤ s ≤ t} > a} = 2P{Bt > a}.

Solution: (a) Let B̃ be an another independent Brownian motion. By the reflection principle,

P[Bs 6= 0 ∀s ∈ [t, 1]]

=

∫ ∞
−∞

P[Bs 6= 0 ∀s ∈ [t, 1]|Bt = a]P[Bt ∈ da]

=

∫ ∞
−∞

P|a|[B̃s > 0 ∀s ∈ [0, 1− t]]P[Bt ∈ da]

=

∫ ∞
−∞

P0[B̃1−t ≤ |a|]P[Bt ∈ da]

= P[|B̃1−t| ≤ |Bt|].

Define

X :=
Bt√
t
.

Now, if X and Y are independent and N(0, 1)-distributed, then

(Bt, B̃1−t)
D
= (
√
tX,
√

1− tY ).

Hence

P[
√

1− t|Y | ≤
√
t|X|]

= P[Y 2 ≤ t(X2 + Y 2)]

=
1

2π

∫ ∞
−∞

dx

∫ ∞
−∞

dy e−(x
2+y2)/2

1{y2≤t(x2+y2)}

=
1

2π

∫ ∞
0

r dr e−r
2/2

∫ 2π

0

dϕ1{sin(ϕ)2≤t} [by polar coordinates]

=
2

π
arcsin(

√
t).

Therefore,

P(
√

1− t|X| ≤ |Bt|) =
2

π
arcsin(

√
t).

(b) By Itô’s formula we can show that (exp(σBt − σ2

2 t))t≥0 is a martingale. Let us denote, Mt :=

2



exp(σBt − σ2

2 t). Therefore, by martingale property,

E[Mτb ] = E[M0]

⇒E[exp(σb− σ2

2
τb)] = 1

⇒ exp(σb)E[exp(−σ
2

2
τb)] = 1

⇒E[exp(−σ
2

2
τb)] =

1

exp(σb)
.

Now, choose σ =
√

2λ. Therefore

E[exp(−λτb)] =
1

exp(b
√

2λ)
.

(c) If B is a Brownian motion and if K 6= 0, then (K−1BK2t)t≥0 is also a Brownian motion. Without
loss of generality, we may assume t = 1. Let τ := inf{s ≥ 0 : Bs ≥ a} ∧ 1. By symmetry, we have
Pa[B1−τ > a] = 1

2 if τ < 1; hence

P[B1 > a] = P[B1 > a|τ < 1]P[τ < 1]

= Pa[B1−τ > a]P[τ < 1]

=
1

2
P[τ < 1].

Therefore the result follows.

�

3. Let (Bt) be any one dimensional Brownian motion, (Ft) its natural filtration and τ a finite stopping
time.
(a) Show that (Bt+τ −Bτ )t≥0 is a standard Brownian motion independent of Fτ .
(b) Using part a) or otherwise show that the strong Markov property holds at τ .

Solution: (a) We first show our statement for the stopping times τn with discretely approximate τ from
above, τn = (m + 1)2−n if m2−n ≤ τ < (m + 1)2−n. Write Bk = {Bk(t) : t ≥ 0} for the Brownian
motion defined by Bk(t) = B(t+ k/2n)− B(k/2n), and B∗ = {B∗(t) : t ≥ 0} for the process defined by
B∗(t) = B(t+ τn)−B(τn). Suppose that E ∈ F+

τn . Then, for every event {B∗ ∈ A}, we have

P({B∗ ∈ A} ∩ E) =

∞∑
k=0

P({Bk ∈ A} ∩ E ∩ {τn = k2−n})

=

∞∑
k=0

P{Bk ∈ A}P(E ∩ {τn = k2−n}),

using that {Bk ∈ A} is independent of E ∩ {τn = k2−n} ∈ F+
k2−n . Again, P{Bk ∈ A} = P{B ∈ A} does

not depend on k, hence
∞∑
k=0

P{Bk ∈ A}P(E ∩ {τn = k2−n}) = P{B ∈ A}
∞∑
k=0

P(E ∩ {τn = k2−n})

= P{B ∈ A}P(E),

3



which shows that B∗ is a Brownian motion and independent of E, hence of F+
τn .

It remains to generalise this to general stopping times τ . As τn ↓ τ we have that {B(s+τn)−B(τn) : s ≥ 0}
is a Brownian motion independent of F+

τn ⊃ F
+
τ . Hence the increments

B(s+ t+ τ)−B(t+ τ) = lim
n→∞

[B(s+ t+ τn)−B(t+ τn)]

of the process {B(r + τ)− B(τ) : r ≥ 0} are independent and normally distributed with mean zero and
variance s. As the process is obviously almost surely continuous, it’s a Brownian motion. Moreover all
increments, B(s + t + τ)− B(t + τ) = limn→∞[B(s + t + τn)− B(t + τn)], and hence the process itself,
are independent of F+

τ .

(b) Let Px denote the probability measure s.t. B = (Bt)t≥0 is a Brownian motion started at x ∈ R, i.e.
the process (Bt − x)t≥0 is a standard Brownian motion.
We have to show that, for every bounded measurable F : R[0,∞) → R and x ∈ R,

Ex[F ((Bt+τ )t≥0)|Fτ ] = EBτ [F (B)]. (1)

It is enough to consider continuous bounded functions F that depend on only finitely many coordinates
t1, · · · , tN since these functions determine the distribution of (Bt+τ )t≥0. Hence, let f : RN → R be
continuous and bounded F (B) = f(Bt1 , · · · , BtN ). The map x 7→ Ex[F (B)] = E0[f(Bt1 +x, · · · , BtN +x)]
is continuous and bounded. Now let τn := 2−nb2nτ + 1c for n ∈ N. Then τn is a stopping time and

τn ↓ τ ; hence Bτn
n→∞−−−−→ Bτ a.s.. Now every Markov process with countable time set (here all positive

rational linear combinations of 1, t1, · · · , tN ) is a strong Markov process. Hence,

Ex[F ((Bτn+t)t≥0)|Fτn ] = Ex[f(Bτn+t1 , · · · , Bτn+tN )|Fτn ]

= EBτn [f(Bt1 , · · · , BtN )]
n→∞−−−−→ EBτ [f(Bt1 , · · · , BtN )] = EBτ [F (B)]. (2)

As B is right continuous, we have F ((Bτn+t)t≥0)
n→∞−−−−→ F ((Bτ+t)t≥0) almost surely and in L1 and thus

E[|Ex[F ((Bτn+t)t≥0)|Fτn ]− Ex[F ((Bτ+t)t≥0)|Fτn ]|]

≤ Ex[|F ((Bτn+t)t≥0)− F ((Bτ+t)t≥0)|] n→∞−−−−→ 0. (3)

Furthermore,

Fτn ↓ Fτ+ :=
⋂

σ>τ is a stopping time

Fσ ⊃ Fτ .

By (2) and (3), we get

EBτ [F (B)] = lim
n→∞

Ex[F ((Bτn+t)t≥0)|Fτn ]

= lim
n→∞

Ex[F ((Bτ+t)t≥0)|Fτn ]

= Ex[F ((Bτ+t)t≥0)|Fτ+].

The L.H.S. is Fτ - measurable. The tower property of conditional expectation thus yields (1).
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